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Abstract 

The rich literature on multiple object tracking (MOT) 
conclusively demonstrates that humans are able to visually 
track a small number of objects. There is considerably less 
agreement on what perceptual and cognitive processes are 
involved. While it is clear that MOT is attentionally 
demanding, various accounts of MOT performance centrally 
involve pre-attentional mechanisms as well. In this paper we 
present an account of object tracking in the ARCADIA 
cognitive system that treats MOT as dependent upon both pre-
attentive and attention-bound processes. We show that with 
minimal addition this model replicates a variety of core 
phenomena in the MOT literature and provides an algorithmic 
explanation of human performance limitations. 

Keywords: attention; visual cognition; multiple object 
tracking; cognitive model 

Introduction 
A sizeable portion of the visual cognition literature has been 
consumed with trying to produce a detailed story about how 
objects in the world are visually represented and tracked 
through time. Attention, broadly construed, is central to 
many of the explanations on offer. Insofar as object-tracking 
behavior is observed in human visual cognition in the 
absence of attention, it is precisely this absence that is 
striking and calls out for explanation. Nowhere is this 
clearer than in the substantial literature on multiple-object 
tracking (MOT; Pylyshyn & Storm 1988). While almost 
universally considered to be an attentionally demanding 
task, MOT has been intensely investigated because it 
appears that object tracking can be sustained for short 
periods in the absence of attention (Alvarez et al. 2005). 
This superficial inconsistency suggests that both attention-
bound and pre-attentive processes are partially constitutive 
of object-tracking capacity, although perhaps do not fully 
exhaust it, since strategies may play a substantial role as 
well.  

But what can performance characteristics on the MOT 
task tell us about the nature of object tracking and the role 
of attention in tracking? If attention can be divided during 
MOT coupled with a dual-task, what are the mechanisms 
that explain successful tracking performance? Finally, how 
would these mechanisms fit into a larger computational 
theory of human visual cognition? The plan for the 
remainder of this paper is to address these questions within 
a computational system. After briefly summarizing some 
important results from the MOT literature, the discussion 

will then turn to a proposal by Dawson (1991) that 
mechanisms involved in the perception of apparent motion 
may be at the heart of the pre-attentive computations that 
enable MOT. 

 Against the backdrop of these requirements, we 
summarize ARCADIA1 with a particular eye on its 
components that contribute to object tracking. These 
components include a visual short-term memory (vSTM), a 
volatile mirror image of vSTM that stores only location as 
suggested by our discussion of apparent motion, and 
respective update mechanisms. We then show via 
simulation that the same proximity-based mechanism is 
involved in producing apparent motion suffices for 
explaining performance on MOT tasks and accounts for 
errors generated when tracked targets become crowded and 
when their speed limits tracking capacity.  

Multiple Object Tracking 
In a typical multiple object tracking experiment, subjects are 
shown a display of some number (usually > 8) of identical 
objects such as circles. A subset of these objects (the targets 
to be tracked) are flashed or highlighted to facilitate 
encoding before returning to their original state. After a 
brief pause each object in the display moves in a random 
fashion for a short period of time, after which subjects are to 
indicate via mouse click which objects are the targets.  

In a recent review, Scimeca and Franconeri (2015) lay out 
a set of four core capacity limits that any adequate theory of 
MOT competence must explain: (1) capacity, (2) crowding, 
(3) hemifields, and (4) speed. In short, tracking more rather 
than fewer objects engenders lower accuracy. Targets that 
are packed closer together negatively impact accuracy. 
When targets are clustered in the same hemifield or 
quadrant of the display, accuracy drops. Finally, accuracy 
drops for targets that move faster. Some of these factors are 
not independent of one another. For example, fast-moving 
targets raise the probability that they will crowd with others 
as a function of time and distance traveled. Similarly, there 
may be an interaction between speed and the number of 
targets in a specific hemifield at any one time.  

As we move on in our discussion, we turn back to these 
core four and show how a very simple proximity heuristic 
suggested in the literature on the perception of apparent 
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motion might help explain some of these limitations in 
tracking performance. The proximity heuristic predicts an 
interaction between the speed of targets and the amount of 
spacing between them. The heuristic fails when speed 
increases and spacing decreases, because objects will have 
more close encounters over time and thus more 
opportunities to have their identities confused in the MOT 
task. 

However, a proximity-based update mechanism alone is 
insufficient for explaining the core four among other results 
in the MOT literature. We need to locate this heuristic in a 
larger framework and make choices about the number, type, 
and status of interacting mechanisms involved in tracking. 
This turns us to the discussion of object construction and 
tracking in ARCADIA. 

The ARCADIA Cognitive System 
ARCADIA as described in (Bridewell & Bello 2015) is at 
its heart a framework for integrating psychological and 
neuropsychological theories. ARCADIA consists primarily 
of components. They are the medium by which theories are 
implemented in ARCADIA, and insofar as ARCADIA 
makes any of its own commitments about how theories are 
realized, it is in the number and type of components used to 
implement it. The only restriction on components is that 
they are able to read and write to a common representational 
schema called interlingua. The particulars of the data 
structures and algorithms contained in each component are 
either inherited from the theories that they implement or are 
at the discretion of the modeler. This is one of the major 
features differentiating ARCADIA from other cognitive 
architectures.  
 

 
 
Figure 2: ARCADIA's processing loop. 
 

Components read and write interlingua elements from 
accessible content, which is populated by the ephemeral 
results of system-wide behavior every cycle. Accessible 
content is flushed and re-populated on every cycle, making 
attention, both exogenous and endogenous, a critical enabler 
for encoding and active maintenance of mental 
representations (i.e., interlingua elements) across contiguous 
cycles. 
   As shown in Figure 1, on each cycle, a privileged item is 
selected from accessible content and broadcast system-wide 
to all components. The selected item serves as the focus of 
attention for that cycle, and once broadcast, all focus-
responsive components take the focus and the current set of 
accessible content and compute their results, which are then 
added to the subsequent set of accessible content. The focus 

of attention is chosen by ARCADIA’s focus selector, which 
is loaded with an attentional strategy for whatever task is 
currently being performed. Attentional strategies in 
ARCADIA are control knowledge, and establish selectional 
preferences over items in accessible content for what to 
focus on during each cycle. A detailed explication of 
ARCADIA’s interlingua, processing loop, and focus 
selection was given by Bridewell & Bello (2015). 

Modeling Object Construction and Tracking 
Visual processing in ARCADIA is divisible into pre-
attentive and attentive computations that can occur 
simultaneously. The set of computations underlying object 
construction can be seen in Figure 2, which may be a 
helpful roadmap for navigating the subsequent description. 
Pre-attentively, ARCADIA employs components that 
compute salience maps via methods described by Itti and 
colleagues (1998) and proto-object representations via 
image segmentation. This latter component produces 
interlingua elements that encode basic color histogram and 
region information wherever closed contours are found in 
the image. This serves as a rough and ready approximation 
to a high-speed, high-capacity iconic memory. The image 
segmenter also provides proto-object regions to the object 
locator component, which will be described in detail shortly 
and also works pre-attentively. 

The next set of components in ARCADIA’s visual system 
is responsible for pre-attentively producing requests for 
orientation. As shown in Figure 2, ARCADIA’s saliency 
highlighter looks at accessible content for interlingua 
elements having saliency maps and others containing proto-
objects. Each region containing a proto-object is co-
registered back onto the saliency map and checked for 
salience value. The saliency highlighter outputs the N 
regions (with N <= 4; see Xu & Chun 2006) containing 
salient proto-objects, which become candidates for 
orientation. The vSTM highlighter produces top-down 
requests for orientation on objects that have been encoded 
into visual short-term memory.  
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Figure 1: Informational exchange between ARCADIA 
components during the basic MOT task. Bolding of text 
indicates that the respective component is responsive to 
the focus of attention, and therefore attention-bound. 
Components having dashed borders are task-specific. 
 



The next layer of the visual system is responsible for 
object-construction, maintenance and tracking. Once 
orientation requests have been generated, whichever 
attentional strategy is currently loaded into ARCADIA’s 
focus selector will be used to select from available 
orientation requests based on their relative prioritization in 
the strategy. Because this stage of vision is attentive, the 
selected region is broadcast system-wide, and any 
components that detect property information, such as shape 
or color, and can produce inferences or judgments about the 
content of the region now do so. The resultant judgments 
are passed by the property detectors up to accessible content 
as interlingua elements. A binding component then binds all 
the features that are detected in the region into an object file, 
which corresponds to a fully formed visual-object and a list 
of its properties. If focused on, new objects are tested 
against object representations in vSTM by the novel object 
vision component to determine whether they are actually 
new objects or should be treated as an update to a 
sufficiently similar object encoded in vSTM. ARCADIA 
assumes a fixed-slot four-element capacity for vSTM with a 
queue structure, so that when at capacity, new objects 
encoded in vSTM displace the oldest object in memory. On 
each cycle, vSTM pushes a list of its elements into 
accessible content, which are used both by the vSTM 
highlighter component and the object locator component. 

Pre-Attentive Location Update: Object Locator 
So far, we have described the normal course of processing 
for object construction, encoding and attention-dependent 
vSTM update. But what vision components are unique to 
MOT performance? Surprisingly, on our account there are 
none. Instead, the tracking mechanism most often 
implicated in MOT performance is motivated by other 
concerns.  

Given two temporally contiguous visual snapshots, the 
human visual system is faced with the problem of re-
identifying objects residing within the first frame with 
objects residing in the second frame, sometimes called the 
correspondence problem.  Moreover, this problem is made 
difficult if the objects in question are in motion and change 
locations between frames, as would be the case for both the 
objects in tracking tasks. Dawson (1991) identified and 
computationally explored a potential solution as a corollary 
to his work on characterizing the mechanisms underwriting 
the phenomena of apparent motion.  

In summary, Dawson finds that the correspondence 
problem is solved in the human visual system through the 
mutual satisfaction of three soft constraints, only two of 
which we will concern ourselves with in this work. The first 
of these constraints ensures a one-to-one mapping of each 
object in the first frame to a corresponding object in the 
second frame. The second constraint embodies a proximity-
based principle such that each object in the first frame is 
assigned to the nearest object in the second frame in terms 
of Euclidean distance. The solution to the correspondence 
problem (1) is insensitive to object features other than 

spatial location and relative velocity and (2) operates on 
timescales well beneath those required to solve the problem 
attentively or deliberatively. 

In ARCADIA, the object locator component serves as a 
bank of visual indices (Pylyshyn & Storm 1988, Alvarez & 
Franconeri 2007) that reference object locations. Object 
locator mirrors the internal structure of vSTM and stores a 
set of locations associated with each object encoded in it. 
There are two critical differences between vSTM and object 
locator. The first is that while vSTM stores conceptual 
representations of objects as collections of properties, the 
representations in object locator only store object location. 
Secondly, while vSTM requires attention to update location 
information for the objects it contains, object locator 
performs updates pre-attentively on each cycle, using 
Dawson’s nearest neighbor proximity-based heuristic.  

Object locator uses proto-object information deposited in 
accessible content by the image segmenter along with the 
contents of vSTM in updating its location information. To 
this end, object locator computes the N nearest proto-object 
neighbors in terms of Euclidean distance for each element of 
vSTM, and updates its location values (which correspond to 
their respective counterparts in vSTM) with new location 
information from their nearest proto-object neighbor. This 
basic computation immediately entails that there will be 
interactions between speed, crowding, and performance in 
MOT, since fast-moving objects will generate more 
instances of crowding over time and generate more 
opportunities for object locator to incorrectly identify vSTM 
elements with the wrong proto-object. 

MOT: Task Specific Components and Strategy 
One of the defining features of our account of MOT is just 
how little must be added to our model of object construction 
and tracking in order to simulate the MOT task. We only 
add a single task-specific component: a “blue highlighter.” 
Our MOT simulation highlights the initial target set in blue 
before changing them back to their initial color. Blue 
highlighter detects proto-objects from the image segmenter 
with blue color histograms, and produces fixation requests 
on those regions of the image. We assume that the 
experimental instructions given to ARCADIA qua human 
subject indicate that targets will initially flash blue so that 
ARCADIA’s attentional strategy reflects prioritization of 
blue-directed orientation requests over any others. 

While not mentioned in the last section, ARCADIA’s 
attentional strategy for object construction and tracking is 
given below: 

 
1. If a new object file is available, make it the focus of 

attention so that it can be compared to and/or encoded 
in vSTM. 

2. Otherwise, if one of the highlighters requests moving 
covert visual attention and there are no inhibitors 



preventing the movement,2 attend to the specified 
proto-object. 

3. If neither of these options exists, attend to an arbitrarily 
selected interlingua element.  

For MOT, the only change we make to the strategy above 
is to induce a preference ordering over highlighters such that 
requests from blue highlighter are prioritized over requests 
from vSTM highlighter, which are prioritized over requests 
from saliency highlighter. This has the effect of ARCADIA 
encoding blue targets when they first flash and serially 
revisiting each vSTM-encoded object over the course of 
tracking. Since object locator updates a mirror image of 
whatever is encoded in vSTM, it is unaffected by the 
attentional strategy above. 

 

 
 
Figure 3: Results when varying the number of targets.  

Computational Simulation  
To test the set of predictions we have made thus far, we ran 
the model of ARCADIA shown in Figure 2 in a standard 
MOT task with sixteen total objects for five seconds per 
trial. We varied speed, spacing, and the number of initial 
targets to be tracked. Spacing between objects (circles of 
diameter D) varied at three levels: 0, 0.5D, and D. 
Effectively, these values amount to either allowing collision 
or requiring one or two full diameters of space between 
objects as they moved. Speed was normed by determining 
the value at which ARCADIA consistently failed to 
correctly identify any targets, even at D spacing. We divided 
this value by four and determined slow, regular, medium, 
and fast speed levels for the targets. Finally either 1, 2, 3, or 
4 targets could be tracked, leading to a 4 x 4 x 3 
configuration. We ran each configuration five times for a 
total of 240 system runs. Each run began with randomly 
selected targets in random locations with randomly selected 
initial trajectories. After each run, we computed the 
proportion of targets that ARCADIA successfully tracked. 

                                                             
2 We do not discuss inhibition here since it plays no role in 

MOT, but other ARCADIA models utilize both task-related 
inhibition and covert inhibition of return (Bridewell & Bello, 2016) 

 
 

Figure 4: The interaction between speed and spacing in 
ARCADIA’s performance on the MOT task. 

Simulation Results 
A 4 (number of targets) x 4 (speed) x 3 (spacing) repeated 
measures ANOVA was conducted. The proportion of targets 
correctly identified served as the dependent variable. There 
was no main effect for the number of targets tracked, F (3, 
12) = 0.68, p = 0.58, indicating that up to 4 targets can be 
tracked robustly. Means and standard errors for number of 
targets tracked can be seen in Figure 3. There was a main 
effect of speed, F (3, 12) = 44.52, p < 0.001, with the 
proportion of targets correctly identified decreasing as speed 
increased (Mslow = 0.82, Mregular = 0.72, Mmedium = 0.51, Mfast 
= 0.33). There was a main effect of spacing, F (2, 8) = 
158.81, p < 0.001, with the proportion of correctly identified 
targets increasing as spacing decreased (M0 spacing = 0.28, 
M.5D spacing = 0.64, MD spacing = 0.87). These two significant 
main effects were qualified by a significant speed by 
spacing interaction, F (6, 24) = 8.70, p < 0.001. This 
interaction can be seen in Figure 4. 

 

General Discussion 
In general, the results of the simulation study are consistent 
with the vast majority of literature on limitations in MOT 
performance. The lack of a main effect of target reflects 
robust tracking of one to four objects via visual indices. The 
main effects of speed and spacing found here are in 
accordance with previous findings and correspond to two 
elements of Scimeca and Franconeri’s core four signature 
performance limits on MOT. Crucially, we also found a 
significant interaction between speed and spacing, which is 
both predicted by any nearest-neighbor type model. While 
not conclusive with respect to the prediction made by 
Franconeri and colleagues (2010) that takes spacing to be 
the only theoretical boundary on MOT performance, our 
results do provide evidence that spacing plays a 
considerable role in offsetting the performance-reducing 
effects of high-speed object movement. To more fully 
pursue Franconeri’s hypothesis, we would need to decrease 
target size and increase the number of possible spacing 
conditions, but we would expect to find performance 
dropping off much more slowly as a function of speed, 
given extra space.  
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We do not report results here related to hemifield and 
quadrant effects nor do we report capacity effects. The 
former, while interesting, are contentious (see Hudson et al. 
2012 for details). Capacity effects for tracking loads greater 
than four are not reported here since ARCADIA’s vSTM is 
only four objects deep. Explanations for how subjects 
manage to track more than four objects are open to many 
different interpretations that invoke strategies and 
mechanisms beyond the simple pre-attentive updating 
mechanism described here.  

So-called “flexible resource theories” have been proposed 
to explain human tracking of more than four targets 
(Alvarez & Franconeri 2007). One of the nagging problems 
about resource theories is that it remains unclear what a 
“resource” could be (Franconeri et al. 2010). Similarly, 
many resource-theory explanations fail to invoke the 
distinction between the attentive and pre-attentive 
components of tracking, even though the weight of evidence 
points to the existence of a pre-attentive basis for MOT 
performance. Finally, others have argued that tracking 
perceptual groups of objects can give the appearance of 
tracking more than four targets because one or more of the 
four are actually sets of targets rather than individuals 
(Yantis 1992). This is just one example of a potential 
strategy that could be employed to explain tracking 
performance past four objects.  

These factors and open possibilities have persuaded us to 
be methodologically conservative in the work we report 
here. We assume that the storehouse for visual indices in our 
approach mirrors the structure of vSTM, which we are 
conservatively assuming is four objects in capacity. One of 
the features of our theory is that it is insensitive to the 
internal structure of vSTM. If, for example, evidence 
persuades us to implement a resource-based account of 
vSTM that allows for a larger number of objects to be 
represented at coarser resolution, our pre-attentive update 
mechanism will mirror this structure and behave 
accordingly. 

Comparison to Other Computational Models 
The approach we have taken with implementing a simple 
nearest-neighbor pre-attentive update within a larger vision 
framework in ARCADIA has several explanatory 
advantages. The most important feature of our proposal is to 
link visual index updating to a known psychological process 
involved in other parts of visual cognition. Alternative 
computational models of MOT use Kalman filters and thus 
share an important similarity: location updating is a function 
of prediction (Vul et al. 2009, Zhong et al. 2014, Srivastava 
& Vul. 2015). However, a number of studies have 
demonstrated that human subjects seem to not rely on 
extrapolation of object trajectories during MOT, which may 
appear to rule out Kalman filters as lacking face validity for 
modeling human tracking performance (Keane & Pylyshyn 
2006, Franconeri et al. 2012). A small number of studies 
demonstrate trajectory extrapolation in MOT under highly 
circumscribed conditions (Fencsik 2007, Howe & 

Holcombe 2012). In these latter two studies, extrapolation 
was only observed for tasks having a tracking load of two or 
less.  Somewhat more disturbingly, Howard and colleagues 
(2011) find that some of the aforementioned results 
indicating trajectory extrapolation involved verbal 
instructions to subjects that may have unintentionally 
primed subjects to use explicitly extrapolative strategies. 

The sharp limitations on tracking load in studies that 
implicate extrapolation in MOT are suggestive of different 
mechanisms at play, or perhaps some difference at the 
tracking-strategy level having to do with allocation of 
attentional resources. Even if extrapolation is happening for 
loads of two or less, it very well may be that this process is 
purely attention-bound and not reflective of the pre-attentive 
location updating mechanism under discussion in this paper. 
In any case, ambiguity of this sort compels us to take care as 
modelers to distinguish between pre-attentive and attention-
bound processes, a distinction that is central in our own 
work. 

Future Work 
Perhaps the lowest hanging fruit involves modeling results 
that show subjects are capable of MOT with occlusions 
using a proximity heuristic such as the one implemented in 
ARCADIA’s object locator (Franconeri et al. 2012). 
Because object property information other than location is 
updated attentively in ARCADIA’s vSTM, identifying 
information about targets would be lost over the course of 
tracking, which is primarily served by pre-attentive 
mechanisms (Pylyshyn 2004). Pylyshyn (2006) has 
suggested that distractor inhibition plays a role in explaining 
why target information is recalled poorly. ARCADIA’s 
attentional strategy for MOT prefers fixating on objects 
encoded in vSTM over anything driven by salience or other 
bottom-up processes. In this way, inhibition is built in as a 
function of being task focused. 

Because ARCADIA is driven by attentional strategies it 
can be used to capture a variety of plausible strategy-driven 
features of MOT. Recent results are suggestive of better 
tracking performance for targets in crowded parts of the 
MOT display (Srinistava & Vul 2015) due to strategic 
deployment of attention to minimize uncertainty. 
Attentional strategies along with other components to detect 
relations could also be used to encode targets as the vertices 
of a polygon to be tracked (Yantis 1992).  ARCADIA 
would need to be outfitted with a theory of overtly deployed 
visual attention and an accompanying model of eye 
movements to begin attacking any of the above in earnest.  
Work on these additions to ARCADIA has begun, allowing 
for a much richer and fuller exploration of the range of 
human object tracking capacity. 
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